N. Walley El-Dine, A. El-Shershaby, S. Afifi, S. El-Bahi, E. Samir

EVALUATION OF NATURAL RADIONUCLIDES FOR MICA AND QUARTZ IN EASTERN DESERT OF EGYPT, USING GAMMA-RAY SPECTROMETRY

By applying high–resolution γ -ray spectroscopic system, the various radionuclides of mica and quartz samples have been identified quantitatively. The specific activity of 226 Ra, 232 Th and 40 K in 25 mica samples collected from 5 locations and 15 quartz samples from 3 locations of geographical areas located in G. Kadabora in Central Eastern Desert of Egypt, were determined by gamma ray spectrometry with a high-purity germanium (HPGe) detector. This subject is important in environmental radiological protection, since mica and quartz are widely used as raw materials in different industries. The results of analysis for 238 U, 232 Th and 40 K specific activities were found to be higher than the permissible level for all mica and quartz samples. The radium equivalent activities in Bq/kg, dose rate in nGy/hr, external and internal hazards in nGy/yr and also (232 Th/ 238 U) ratios Clark's value s are calculated. From this study, it is clear that G. Kadabora, Central Eastern Desert, Egypt can be considered unsafe to use as raw materials.

Keywords: natural radioactivity, mica and quartz, external hazard index.